K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 12 2020

\(A\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{1}{2}\left(x+y+z\right)\ge\dfrac{1}{2}\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=\dfrac{1}{2}\)

\(A_{min}=\dfrac{1}{2}\) khi \(x=y=z=\dfrac{1}{3}\)

NV
13 tháng 12 2020

1. Với mọi số thực x;y;z ta có:

\(x^2+y^2+z^2+\dfrac{1}{2}\left(x^2+1\right)+\dfrac{1}{2}\left(y^2+1\right)+\dfrac{1}{2}\left(z^2+1\right)\ge xy+yz+zx+x+y+z\)

\(\Leftrightarrow\dfrac{3}{2}P+\dfrac{3}{2}\ge6\)

\(\Rightarrow P\ge3\)

\(P_{min}=3\) khi \(x=y=z=1\)

1.1

ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}\dfrac{1}{\sqrt{x}}=a>0\\\dfrac{1}{\sqrt{y}}=b>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+\sqrt{2-b^2}=2\\b+\sqrt{2-a^2}=2\end{matrix}\right.\)

\(\Rightarrow a-b+\sqrt{2-b^2}-\sqrt{2-a^2}=0\)

\(\Leftrightarrow a-b+\dfrac{\left(a-b\right)\left(a+b\right)}{\sqrt{2-b^2}+\sqrt{2-a^2}}=0\)

\(\Leftrightarrow a=b\Leftrightarrow x=y\)

Thay vào pt đầu:

\(a+\sqrt{2-a^2}=2\Rightarrow\sqrt{2-a^2}=2-a\) (\(a\le2\))

\(\Leftrightarrow2-a^2=4-4a+a^2\Leftrightarrow2a^2-4a+2=0\)

\(\Rightarrow a=1\Rightarrow x=y=1\)

NV
13 tháng 12 2020

2.

\(\left\{{}\begin{matrix}x^2+xy+y^2=7\\\left(x^2+y^2\right)^2-x^2y^2=21\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+xy+y^2=7\\\left(x^2+xy+y^2\right)\left(x^2-xy+y^2\right)=21\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+xy+y^2=7\\x^2-xy+y^2=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x^2+3xy+3y^2=21\\7x^2-7xy+7y^2=21\end{matrix}\right.\)

\(\Rightarrow4x^2-10xy+4y^2=0\)

\(\Leftrightarrow2\left(2x-y\right)\left(x-2y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=2x\\y=\dfrac{1}{2}x\end{matrix}\right.\)

Thế vào pt đầu

...

5 tháng 6 2017

1 + y2 = xy + yz + xz + y2 = (x + y)(y + z)

1 + z2 = xy + yz + xz + z2 = (x + z)(z + y)

1 + x2 = xy + yz + xz + x2 = (y + x)(x + z)

Sau khi thay vào và rút gọn ta được

S = x(y + z) + y(x + z) + z(x + y)

S = 2(xy + yz + xz) = 2.1 = 2

5 tháng 6 2017

Ace Legona

9 tháng 9 2017

Câu 1/

\(\left\{{}\begin{matrix}\sqrt{\dfrac{4x}{5y}}=\sqrt{x+y}-\sqrt{x-y}\left(1\right)\\\sqrt{\dfrac{5y}{x}}=\sqrt{x+y}+\sqrt{x-y}\left(2\right)\end{matrix}\right.\)

Lấy (1).(2) vế theo vế được

\(\left(\sqrt{x+y}-\sqrt{x-y}\right)\left(\sqrt{x+y}+\sqrt{x-y}\right)=2\)

\(\Leftrightarrow x+y-\left(x-y\right)=2\)

\(\Leftrightarrow2y=2\)

\(\Leftrightarrow y=1\)

Thế vô tìm được x.

9 tháng 9 2017

Câu 2/ Đề chưa đủ. x, y, z thuộc R luôn à. Tìm min hay max hay là tìm cả 2.

14 tháng 4 2017

Đề bị lỗi không biết cái đề ghi gì trong đó nữa

14 tháng 4 2017

câu 1:

từ giả thiết\(\Rightarrow\sqrt{x+1}+\sqrt{2-y}=\sqrt{y+1}+\sqrt{2-x}\)

\(\Leftrightarrow\left(\sqrt{x+1}-\sqrt{y+1}\right)+\left(\sqrt{2-y}-\sqrt{2-x}\right)=0\)

\(\Leftrightarrow\dfrac{x+1-y-1}{\sqrt{x+1}+\sqrt{y+1}}+\dfrac{2-y-2+x}{\sqrt{2-y}+\sqrt{2-x}}=0\)

\(\Leftrightarrow\left(x-y\right)\left(\dfrac{1}{\sqrt{x+1}+\sqrt{y+1}}+\dfrac{1}{\sqrt{2-y}+\sqrt{2-x}}\right)=0\)

hiển nhiên trong ngoặc lớn khác 0 nên x=y thay vào 1 trong 2 phương trình đầu tính (nhớ ĐKXĐ đấy )

câu 2:

chịu

câu 3:

đánh giá: ta luôn có \(x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\)

chứng minh: bất đẳng thức trên tương đương \(\dfrac{1}{2}\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\ge0\)(luôn đúng )

dấu = xảy ra khi \(x=y=z=\dfrac{2016}{3}=672\)

30 tháng 4 2017

bai 2 quen quen

30 tháng 4 2017

à bài này làm r` ở bên đây nè :D có cả 2 cách

Câu hỏi của Phúc Long Nguyễn - Toán lớp 9 - Học toán với OnlineMath

26 tháng 10 2018

\(\dfrac{x^2}{x+y}+\dfrac{y^2}{y+z}+\dfrac{z^2}{x+z}\ge\dfrac{x^2}{x+y+z}+\dfrac{y^2}{x+y+z}+\dfrac{z^2}{x+y+z}=\dfrac{x^2+y^2+z^2}{x+y+z}=\dfrac{\left(x+y+z\right)^2-2\left(\sqrt{xy}+\sqrt{zx}+\sqrt{yz}\right)}{x+y+z}\ge\dfrac{1-2.1}{1}=-1\)Áp dụng bất đẳng thức cô-si ta có:

\(x+y\ge2\sqrt{xy}\) , \(x+z\ge2\sqrt{xz}\) , \(y+z\ge2\sqrt{yz}\)

Cộng vế với vế suy ra:

\(2\left(x+y+z\right)\ge2\left(\sqrt{xy}+\sqrt{zx}+\sqrt{yz}\right)\\ \Leftrightarrow x+y+z\ge1\)

Vậy

28 tháng 10 2018

Trà ơi ! Mình xin lỗi bạn nhiều lắm bài đó mình lỡ giải sai, để mình sữa lại cho bạn:

Đầu tiên ta vẫn có:\(x+y+z\ge1\) (chứng minh trên)

Vậy \(\dfrac{x^2}{x+y}+\dfrac{y^2}{y+z}+\dfrac{z^2}{z+x}\ge\dfrac{x^2}{x+y+z}+\dfrac{y^2}{x+y+z}+\dfrac{z^2}{x+y+z}=\dfrac{x^2+y^2+z^2}{x+y+z}\ge x^2+y^2+z^2\ge0\)